

POSSIBILITIES OF ATROPHIC POST-ACNE SCARS THERAPY WITH THE COMBINED USE OF PRP-THERAPY, T-LAB PRP-TUBE AND THE PRODUCT COLLOST®

Kogut Dmitry
Sergeevich
dermatovenerologist, cosmetologist, physiotherapist, certified specialist in minimally invasive rejuvenation techniques, certified trainer of the Melis company, Moscow

Acne is the most common dermatosis among young, socially active people. Up to 35 % of developing post-acne, which can reach 95 %, male adolescents and 23 % of female and with some forms of acne (papulopustular adolescents suffer from this disease. The long- and nodulocystic), post-acne is observed in term course of the disease, especially on exposed areas of the body, leads to psychoemotional

The resulting consequences of acne, stress in most patients: the patient's assessment sometimes disfiguring, bother patients no of the severity of acne is often significantly less than the active manifestations of the overestimated compared to the actual clinical disease itself, are difficult to correct, require course of the disease.

Acne is a multifactorial chronic recurrent for life, and reduce the quality of life of inflammatory disease of the sebaceous hair follicle [4–5].

The key factors in the development of the pathological process are lipid imbalance, increased pathogenicity of *Propionibacterium* and activity of the sebaceous glands, disruption of the circulation of certain hormones, hereditary predisposition, follicular hyperkeratosis, and disruption of keratinization processes.

Acne disease is one of the most common causes of scar formation, as well as disturbances of natural skin pigmentation, which can be combined into one term "post-acne". Post-acne includes a symptom complex of secondary rashes that developed as a result of the evolution of various forms of inflammatory acne and are accompanied by pigmentation disorders and the formation of cicatricial changes in the skin.

Biochemical and pathophysiological processes of post-acne scars formation

According to modern concepts of scar pathogenesis, the evolution of inflammatory elements of acne with the outcome in an atrophic or hypertrophic scar is associated with an imbalance of metalloproteinases responsible for the architecture of the extracellular matrix: MMP-1, MMP-2, MMP-9, MMP-13, proMMP-1, proMMP-9, MMP-28 (epilysin).

Matrix metalloproteinases belong to a large family. The process is aggravated by the cell wall MMP-13, also known as collagenase 3, has of Zn^{2+} - and Ca^{2+} -containing endopeptidases peptide *P. acnes*, which enhances the broad substrate specificity. Enzyme secreted by various types of cells that destroy all degradation of the extracellular matrix expression is enhanced under conditions that protein and proteoglycan components of the through gene expression of proMMP-2 promote endothelial cell growth and vascular extracellular matrix, including fibrillar and non-synthesis [8, 9, 10].

fibrillar collagens, fibronectin, laminin, and MMP-2 (gelatinase) is expressed primarily in overexpression with non-healing wounds has glycoproteins of the basement membrane [6, p. fibroblasts during tissue development and been demonstrated using chronic skin ulcers 33].

The totality of all MMPs is capable of hydrolyzing neutrophils, macrophages and monocytes. MMP-13 is localized in the plasma all components of connective tissue. The activity MMP-2 is required for angiogenesis process membrane of the affected endothelial cell of various MMPs has a wide range of biological inhibition. Together with MMP-9, it is layer, and NO leads to the release of MMP-consequences, since they destroy most involved in the degradation of type IV 13, which in turn is involved in epithelial components of the extracellular matrix: interstitial collagen, the main component of basement collagen and collagens of the basement membranes and gelatin.

membrane, proteoglycans, decorin, fibromodulin, MMP-2 can also degrade other types of collagen (V, VII, and X), elastin, and fibronectin, etc.

MMP gene expression is induced by a large fibronectin. For example, MMP-2 cleaves Based on the above, it can be concluded that number of substances, including growth factors, monocyte chemotactic protein-3, which inhibition or expression of MMPs directly cytokines, chemical agents, and mechanical stress. results in decreased inflammation and affects the quality of remodeling of the

The sources of MMPs formation in the skin are provides vasoconstriction. fibroblasts, macrophages, neutrophils, monocytes, MMP-9 (also known as gelatinase B), along and keratinocytes. In addition to matrix proteins, with elastase, is a regulatory factor for

the substrates of MMP action are growth factors neutrophil migration across the basement membrane during inflammation. MMP-9 has fibroblast growth factor, epidermal growth factor), several important functions in neutrophil early stages of their formation.

cytokines (tumor necrosis factor α , interleukins), function, such as extracellular matrix adhesion molecules (integrins) and apoptosis degradation and TGF- β activation factors. This apparently explains not only the Transforming growth factor TGF- β initiates

regulatory function of MMPs in the mechanisms apoptosis in most cell types. TGF- β can of degradation/accumulation of the extracellular induce apoptosis by activating either of two matrix, but also their indirect participation in signaling pathways – SMAD or DAXX.

intercellular and cell-matrix interactions, in Substrates for MMP-9 include denatured morphogenesis, angiogenesis, proliferation, collagen type I (gelatin), native collagens of migration and differentiation of cells, and types IV, V, VII, X, and XI, fibrinogen, apoptosis [7, pp. 19–22].

On the other hand, increased MMP-9 is able to cleave latent TGF- β , leading to its activation. MMP-9 may indirectly participate in the fibrotic response through activation of TGF- β , a possible fibrogenic factor [11, p. 117].

MMP-1 collagenase I is synthesized by component of the cell membrane), and type fibroblasts, macrophages, keratinocytes, IV collagen. MMP-9 expression correlates endothelial cells, etc. MMP-1 synthesis is with collagen misorientation, particularly stimulated by various agents: epidermal growth desmoplasia.

factor, interleukins and TNF- α , chemical TGF- β is known to increase MMP-9 compounds such as cAMP. MMP-1 is involved in production in a variety of cell types, most the degradation of collagen strands during likely through a process that interferes with protein synthesis, leading to increased

stability of MMP-9 mRNA.

On the other hand, increased MMP-9 is able to cleave latent TGF- β , leading to its activation. MMP-9 may indirectly participate in the fibrotic response through activation of TGF- β , a possible fibrogenic factor [11, p. 117].

Correction of cicatricial changes

If we talk about already formed cicatricial changes, then, according to literature, there are three main types of atrophic post-acne scars: V-shaped (Icepick), M-shaped (Rolling), U-shaped (Boxcar). Since post-acne scars can be complicated by dyschromic, stagnant changes, it is best to use various techniques, as well as their combinations, when correcting post-acne.

To correct cicatricial changes in the skin in the post-acne stage, PRP therapy, mesotherapy, chemical peels, mechanical dermabrasion, laser ablation, RF technologies, injections of soft fillers, collagen preparations and course treatments including combinations of these methods are used. Combined techniques are the key to achieving optimal clinical results in patients with severe acne scars [12].

Fig. 1. The polycomponent nature of PRP allows us to say that it is a universal basic method of therapy at different stages of the disease, both in the early stages and at the stage of formation of post-acne processes. The method of preparing PRP in T-LAB PRP-tubes allows for the isolation of 1.95 Med DOSE (Dose of injected Platelets (billions)) per volume of up to 4.4 ml of plasma with a pure plasma level of 98.55 % [13].

PRP modulates and regulates the function of primary, secondary and tertiary growth factors, affecting all stages of regeneration simultaneously. The mentioned property distinguishes PRP growth factors from recombinant growth factors, each of which is responsible for a separate regeneration mechanism (table). [14]

Table. Regenerative mechanisms modulated by growth factors contained in PRP

Growth factor	Regeneration mechanism
PDGF	Activates proliferation and migration of mesenchymal cells, stimulates angiogenesis
IGF	Stimulates differentiation of young and stem cells, enhances metabolism
PDGF	Contains signal peptides. Produced by platelets and macrophages. Transforms cells that have the corresponding receptors, activates proliferation and migration of mesenchymal (osteogenic) cells
EGF	Stimulates the proliferation of fibro- and osteoblasts, the synthesis of fibronectin
FGF	They are produced by endothelial cells, macrophages, osteoblasts and platelets. 23 different FGFs are known in humans. The most important in the process of skin wound healing are fibroblast growth factor-2, fibroblast growth factor-7 and fibroblast growth factor-10. Fibroblast growth factor-2 activates the synthesis of matrix macromolecules, especially dermal glycosaminoglycans, hyaluronic acid and inhibits the synthesis of collagenase-1 in keratinocytes. Fibroblast growth factors 7 and 10 interact with fibroblast growth factor receptors-2-IIIb, which are found only on keratinocytes. <i>In vitro</i> studies have shown that fibroblast growth factors 7 and 10 stimulate keratinocyte proliferation and migration and play an important role in re-epithelialization
TGF- β	The transforming growth factor "family" is produced by platelets and osteoblasts. They are found in large quantities in platelets. Increase the activity of some MMPs responsible for dermal matrix remodeling
DEGF	An enzyme that maintains the integrity of blood vessels. It has a stimulating effect on endothelial cells and has an angiogenic effect.

Fig. 2. Collost[®] Taking into account the data from scientific gel contains type I publications, monographs, articles, post-collagen derived clinical studies and understanding the from bovine skin mechanisms of action of PRP and the Collost and is free of the[®] dermal implant, we can confidently cell pool and other assume the synergism of their action.

components of By using the T-LAB PRP-tube system (Fig. 1) for the treatment of atrophic post-acne scars followed by implantation of Collost gel[®] (Fig. 2), we can expect a more pronounced response to trauma during injections and active remodeling of the dermal matrix in the area of atrophic defects.

When administered intradermally, at the first stage Collost® serves as a matrix for the formation of new tissue, creating optimal conditions for the migration and implantation of fibroblasts and improving their intercellular interactions.

A connective tissue capsule does not form at the product implantation site, since Collost® does not provoke fibrosis, which is especially important for the treatment of cicatricial changes, namely post-acne.

When the cell pool of fibroblasts "populates" the collagen matrix under the influence of previously introduced plasma obtained using the T-LAB PRP-tube system and a powerful reparative process launched due to the release of growth factors, a pronounced remodeling of the intercellular matrix occurs with gradual degradation of the Collost® implant.

Clinical case

A 30-year-old female patient visited the clinic with complaints of multiple post-acne scars localized in the cheek area, formed during the course of acne.

History: acne of moderate severity, papulopustular form. The skin is porous, dense, turgor and elasticity are not reduced.

After the consultation, the patient was offered the following treatment tactics: injections of PRP obtained through the T-LAB PRP-tube system using the subcision technique in combination with the product Collost® 7% within one procedure. The course consisted of three procedures with an interval of 4 weeks.

Protocol of the procedure

When isolating PRP using the T-LAB PRP-tube system, venous blood was collected in a volume of 10 ml. Anticoagulant - sodium citrate.

The use of tubes with sodium citrate is more appropriate than tubes with heparin, since sodium citrate, unlike heparin, does not affect platelet aggregation and, therefore, does not change the qualitative characteristics of the final product – PRP plasma.

Subcision is a painstaking but very effective method that a cosmetologist can use in their routine practice. Since deep post-acne scars are usually very tightly fused with the underlying tissues, aesthetic correction may be ineffective without this procedure.

The blood was centrifuged for 4 minutes at 2300 rpm. This centrifugation method intradermally with subcision of scar elements produces 5 ml of PRP (platelet-rich plasma) and 3 ml of PPP (platelet-poor plasma). Two test tubes were used for one procedure. After releasing the tissue with a thin needle (cutting the fibrous strands), the product Collost® 7% was injected directly under the scar defect in order to fill the resulting voids and initiate tissue restructuring [15].

Fig. 3. Patient, 30 years old, before the course on the right (A) and left (B) and after two procedures on the right (B) and left (D)

CLINICAL EXPERIENCE

 After each injection procedure, the patient's skin requires time to fully recover. Accelerated treatment usually leads to complications. The standard protocol for using PRP involves injections once every 7–14 days, but since the subcision method is an additional traumatic factor, the recommended interval between the procedures performed using this technique should be at least 4 weeks and can be increased to 6 weeks in the case of extensive cicatricial changes correction [16]

The remaining volume of plasma was injected along the periphery of the foci of cicatricial changes using the microbolus technique to a depth of 4 mm and over the entire surface of the face using the dermal injection technique to a depth of up to 1.5 mm with maximum injection density 3. The injection of PRP and Collost® 7 % was performed using local application anesthesia. The remodeling effect of the product Collost® 7 % is prolonged in time, but the first results can be observed after two procedures (Fig. 3).

And in conclusion

The results of the therapy clearly confirm the pronounced therapeutic activity of PRP in combination with the product Collost® in one procedure using the subcision method. Due to the pathogenetic effect of the products on the links in the cicatricial deformation formation processes, the combined use of PRP and the product Collost® allows achieving significant clinical results already at the initial stage of therapy, two months after the start of the course.

REFERENCES

- [1] Klimova O.A., Chebotarev V.Yu. // Biol. experimental biology and medicine. - 1999. - No. 9. - P. 308-313.
- [2] Peled ZM., Chin G.S., Liu W.L. // Clin. Plast. Surg. - 2000. -Vol. 27, № 4. - P. 489-500.
- [3] Filippova O.V., Krasnogorskiy I.V. //Clinical dermatology and venereology. - 2013. - No. 1. - P. 22–29.
- [4] Roseborough I.E., Grevios M.A., Lee R.C. // J. Natl. Med. Ass. - 2004. - Vol. 96, № 1. - P. 108-116.
- [5] Ozerskaya O.S. Skin scars and their dermatocosmetological correction. - St. Petersburg, 2007. - P. 248.
- [6] Zubova A.V. Plasma lipoproteins and matrix metalloproteinase activity in type 2 diabetes mellitus: diss...., candidate of biological sciences. - Novosibirsk Federal State Budgetary Scientific Institution of Higher Education "Novosibirsk State Medical University" of the Ministry of Healthcare of the Russian Federation, from T-LAB Medical Devices. Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 2020. - 122 p.
- [7] Dzhazaeva M.B. Clinical, diagnostic and prognostic values of matrix metalloproteinases in connective tissue dysplasia. - Modern methods of correction of post-acne scars // Ural Medical Stavropol: Federal State Budgetary Educational Institution of Higher Education "Stavropol State Medical University", 2019. - 136 p.
- [8] Zabnenkova O.V. Complex treatment of acne vulgaris and correction of post-inflammatory skin changes using alpha hydroxy acids: author's abstract ... Candidate of Medicine. - M., 2004.
- [9] Sato T., Kurihara H., Akimoto N., Noguchi N., et al. Augmentation of gene expression and production of Promatrix metalloproteinase 2 by Propionibacterium acnes derived factors in hamster sebocytes and dermal fibroblasts: a possible mechanism
- [10] Thiboutot D., Gollnick H. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group // J. Am. Acad. Dermatol. - 2009; 60: 1-50.
- [11] Yarmolinskaya M.I., Molotkov A.S., Denisova V.M. Matrix metalloproteinases and inhibitors: classification, mechanism of action. - Research Institute of Obstetrics and Gynecology named after D.O. Ott, Northwestern Branch of the Russian Academy of Medical Sciences. - T., LXI. Issue No. 1. -2012.
- [12] Stenko A.G., Shmatova A.A. Application of the fractional photothermolysis method in patients with cicatricial lesions of the facial skin // Plastic surgery and cosmetology. - 2013. - No. 2. - P. 21-27.
- [13] Magallon J. Biological result platelet rich plasma obtained from T-LAB Medical Devices.
- [14] Akhmerov R.R. Regenerative medicine based on autologous plasma. Plasmolifting™ technology. -M.: LitTerra, 2014. - P. 18-19.
- [15] Kungurov N.V., Tolstaya A.I., Zilberberg N.V., Golikov M.Yu. Modern methods of correction of post-acne scars // Ural Medical Journal. - 2011. -No. 8. - P. 97–104.
- [16] Tan J., Bourdès V., Bissonnette R., Petit B., et al. Prospective Study of Pathogenesis of Atrophic Acne Scars and Role of Macular Erythema // J Drugs Dermatol. - 2017; 16(6): 566-572.